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Policy Logic: Cost-Benefit Per-process 
profiles loaded 
from Userspace.

Our Proposal

eBPF programs capable of:
• Attaching to huge page 

management key 
decision points.

• Fine-grained control over 
huge page size selection.

Using eBPF implement a 
cost-benefit policy:
❖ Inspired by CBMM [2].
❖ Determines the most 

beneficial huge page 
size.

Future Work

Implement more policies 
regarding huge page 
allocation:
➢ Fair distribution of huge 

pages among processes. 

Expand eBPF programs to 
other parts of the memory 
management subsystem:
➢ Page placement in 

memory-tiered systems
➢ Victim-page selection for 

reclamation.

Conclusions

✓ Less memory bloat 
generated by avoiding 
internal fragmentation.

✓ More flexible to use 
under fragmentation.

✓ Possibly allow memory 
contiguity to be 
consumed by other 
applications.

✓ Intermediate sizes 
balance the trade-offs of 
huge pages.

Introduction Implementation Results

Research Problem

• Virtual Memory Overhead.
• Address Translation Wall [1].
• Translation Lookaside 

Buffers hit ratio.
• Huge Page management.
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Linux THP
• Synchronous  (page fault)
• Asynchronous (khugepaged)

eBPF-mm achieves similar 
performance with Linux 
THP:
• Uses only a fraction of 

2MiB huge pages.
• Reduces TLB misses 

adequately.
• Utilizes intermediate 

64KiB translation sizes.

Observations

Motivation

• Armv8-A and RISC-V support additional huge page sizes.
➢ 64KiB and 32MiB.
➢ Coalesced PTE and PMD entries in a single TLB entry.

• No fine-grained control over huge page size selection.
• Greedy, cost-unaware huge page allocation policies. 

Linux THP

Benefit Estimation

• DAMON for access frequency.
• HW-based TLB miss sampling 

with armv8-A SPE.

Memory Region 
Classification [3]

• TLB-friendly.
• High-Reuse TLB-Sensitive.
• Low-Reuse TLB-Sensitive.

Cost Calculation

Costs:
▪ Prepare memory area.
▪ Find contiguous 

physical memory.
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Calculate costs with 
tracepoints.

Larger page size

Higher setup cost

No profile found

Default Linux

Cost = Allocation + Preparation

Allocation
• Zero if abundant contiguous 

memory.
• Else, cost of memory compaction.
• New eBPF helper function informs 

about memory contiguity.

Preparation
• Memory zeroing 

(anonymous).
• Secondary Storage IO

(file-backed).
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