
eBPF-mm: Userspace-guided memory management with eBPF
Konstantinos Mores, Stratos Psomadakis, Georgios Goumas

National Technical University of Athens

handle_mm_fault

eBPF hook point

2MiB huge page

mTHP support

Faulting Address:
0xffcaasasddsaPage Fault Code

PID 756

1MiB huge page

32KiB huge page

512KiB huge page

256KiB huge page

128KiB huge page

64KiB huge page

Faulting Address

Available huge
page sizes

Context

eBPF program

Get context
information

Policy Logic

Choose huge
page size

pid profile

467

756

784

start end 64 KiB 2 MiB

0xfffff4800000 0xfffff5e00000 34567734 13626523

0xfffff7000000 0xfffff7200000 1926935 65871123

0xfffff8200000 0xfffff9000000 76012990 8923619

1.
36

1.
16

1.
11

1.
36

1.
12

1.
09

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

micro-benchmark astar omnetpp

Speedup (x)

4KiB pages THP eBPF-mm

0.
01

0.
02 0.
04

0.
02 0.
03

0.
47

0.00

0.20

0.40

0.60

0.80

1.00

1.20

micro-benchmark astar omnetpp

TLB Misses (x)

4KiB pages THP eBPF-mm

1.00 1.00 1.00

0.13

0.33 0.38

0.00

0.20

0.40

0.60

0.80

1.00

1.20

micro-benchmark astar omnetpp

2MiB Huge Pages Used (x)

THP eBPF-mm

1 0 0 0 0 1 0

Available huge page sizes

0 0 0 1 0 1 0

eBPF-proposed huge page sizes Logical
AND

0 0 0 0 0 1 0

Available huge page sizes after eBPF

Profile of PID 756

eBPF map

Search for a loaded
profile

Search for a
profiled memory

region

Compute the costs
of huge page

promotion

Calculate the most
beneficial huge

page size

Policy Logic: Cost-Benefit Per-process
profiles loaded
from Userspace.

Our Proposal

eBPF programs capable of:
• Attaching to huge page

management key
decision points.

• Fine-grained control over
huge page size selection.

Using eBPF implement a
cost-benefit policy:
❖ Inspired by CBMM [2].
❖ Determines the most

beneficial huge page
size.

Future Work

Implement more policies
regarding huge page
allocation:
➢ Fair distribution of huge

pages among processes.

Expand eBPF programs to
other parts of the memory
management subsystem:
➢ Page placement in

memory-tiered systems
➢ Victim-page selection for

reclamation.

Conclusions

✓ Less memory bloat
generated by avoiding
internal fragmentation.

✓ More flexible to use
under fragmentation.

✓ Possibly allow memory
contiguity to be
consumed by other
applications.

✓ Intermediate sizes
balance the trade-offs of
huge pages.

Introduction Implementation Results

Research Problem

• Virtual Memory Overhead.
• Address Translation Wall [1].
• Translation Lookaside

Buffers hit ratio.
• Huge Page management.

CPU Memory

TLB

Address Translation

PT Walk

TLB miss

TLB hit

Linux THP
• Synchronous (page fault)
• Asynchronous (khugepaged)

eBPF-mm achieves similar
performance with Linux
THP:
• Uses only a fraction of

2MiB huge pages.
• Reduces TLB misses

adequately.
• Utilizes intermediate

64KiB translation sizes.

Observations

Motivation

• Armv8-A and RISC-V support additional huge page sizes.
➢ 64KiB and 32MiB.
➢ Coalesced PTE and PMD entries in a single TLB entry.

• No fine-grained control over huge page size selection.
• Greedy, cost-unaware huge page allocation policies.

Linux THP

Benefit Estimation

• DAMON for access frequency.
• HW-based TLB miss sampling

with armv8-A SPE.

Memory Region
Classification [3]

• TLB-friendly.
• High-Reuse TLB-Sensitive.
• Low-Reuse TLB-Sensitive.

Cost Calculation

Costs:
▪ Prepare memory area.
▪ Find contiguous

physical memory.

1. Bhattacharjee, “Preserving Virtual Memory by Mitigating the Address Translation Wall”, In IEEE Micro 2017.
2. M. Mansi, “CBMM: Financial Advice for Kernel Memory Managers”, In USENIX ATC 2022.
3. Aninda Manocha, “Architectural Support for Optimizing Huge Page Selection Within the OS”, In MICRO 2023.

References

Calculate costs with
tracepoints.

Larger page size

Higher setup cost

No profile found

Default Linux

Cost = Allocation + Preparation

Allocation
• Zero if abundant contiguous

memory.
• Else, cost of memory compaction.
• New eBPF helper function informs

about memory contiguity.

Preparation
• Memory zeroing

(anonymous).
• Secondary Storage IO

(file-backed).

	Slide 1

