
SnapBPF: Exploiting eBPF for Serverless Snapshot
Prefetching

Stratos Psomadakis
National Technical University of

Athens
Athens, Greece

psomas@cslab.ece.ntua.gr

Dimitrios Siakavaras
National Technical University of

Athens
Athens, Greece

jimsiak@cslab.ece.ntua.gr

Chloe Alverti
University of Illinois
Urbana-Champaign
Champaign, IL, USA
xalverti@illinois.edu

Symeon Porgiotis
National Technical University of

Athens
Athens, Greece

sporg@cslab.ece.ntua.gr

Orestis Lagkas Nikolos
National Technical University of

Athens
Athens, Greece

olagkas@cslab.ece.ntua.gr

Christos Katsakioris
National Technical University of

Athens
Athens, Greece

ckatsak@cslab.ece.ntua.gr

Konstantinos Nikas
National Technical University of

Athens
Athens, Greece

knikas@cslab.ece.ntua.gr

Georgios Goumas
National Technical University of

Athens
Athens, Greece

goumas@cslab.ece.ntua.gr

Nectarios Koziris
National Technical University of

Athens
Athens, Greece

nkoziris@cslab.ece.ntua.gr

Abstract
In this work, we design SnapBPF, an eBPF-based snapshot
prefetching mechanism, targeting VM-sandboxed serverless
functions, which enables the efficient capture and prefetch-
ing of function working sets in kernel-space. SnapBPF dedu-
plicates function working sets in memory and obviates the
need for separately serializing them on disk. We comple-
ment SnapBPF with a lightweight paravirtualized interface
to efficiently handle VM-sandbox memory allocations with-
out requiring any snapshot pre-processing. Our evaluation
shows that SnapBPF is able to match and improve state-of-
the-art performance with regard to i) function invocation
latency and ii) memory usage for concurrent function invo-
cations, without separately serializing working sets on disk
or requiring any preemptive snapshot scanning.

CCS Concepts
• Computer systems organization→ Cloud computing;
• Software and its engineering → Virtual machines;
Memory management.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HotStorage ’25, Boston, MA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1947-9/2025/07
https://doi.org/10.1145/3736548.3737823

Keywords
Serverless, FaaS, Virtualization, Snapshots, eBPF
ACM Reference Format:
Stratos Psomadakis, Dimitrios Siakavaras, Chloe Alverti, Symeon
Porgiotis, Orestis Lagkas Nikolos, Christos Katsakioris, Konstanti-
nos Nikas, Georgios Goumas, and Nectarios Koziris. 2025. SnapBPF:
Exploiting eBPF for Serverless Snapshot Prefetching. In 17th ACM
Workshop on Hot Topics in Storage and File Systems (HotStorage
’25), July 10–11, 2025, Boston, MA, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3736548.3737823

1 Introduction
In Function-as-a-Service (FaaS) [1–6], the dominant server-
less computing paradigm, users upload their code as a func-
tion, which the FaaS providers then sandbox, deploy and
scale on their infrastructure. One of the dominant overheads
of FaaS stems from cold starts [7, 8], i.e., when new function
sandboxes need to be spawned to handle incoming requests.
As FaaS providers typically resort to virtualization (VM)-
based sandboxes for stronger tenant isolation guarantees [9],
this exacerbates the cold-start overhead.

To alleviate this overhead, function snapshotting has been
proposed by academia [10, 11] and adopted by the indus-
try [12, 13]. For VM-sandboxed functions, the snapshotted
function memory, i.e., the memory of the VM sandbox after
the function has been initialized and pre-warmed [14, 15],
is serialized to storage as a file. This snapshot file is then
memory-mapped to act as the memory of newly-spawned

https://orcid.org/0009-0002-0614-4438
https://orcid.org/0000-0002-9857-623X
https://orcid.org/0000-0002-7965-0510
https://orcid.org/0009-0004-3638-4752
https://orcid.org/0000-0001-7531-8310
https://orcid.org/0000-0002-9634-2835
https://orcid.org/0000-0003-4424-9951
https://orcid.org/0000-0001-7811-4831
https://orcid.org/0000-0002-4890-8427
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3736548.3737823
https://doi.org/10.1145/3736548.3737823


HotStorage ’25, July 10–11, 2025, Boston, MA, USA S. Psomadakis et al.

pre-warmed VM sandboxes, which will serve incoming func-
tion invocations.

While function snapshotting obviates the need for booting
a fresh VM for each cold function invocation, it still suffers
from the latency of faulting-in the snapshotted memory from
storage. Previous works [11, 16, 17] have proposed capturing
and prefetching the function working set from the snapshot
file in userspace to minimize this overhead. However, as
shown in Table 1, these approaches have limitations. All
of them require separately serializing the working set on
disk. Moreover, approaches that use the userfaultfd mech-
anism [18] are unable to deduplicate the function working
sets in memory.

To that end, we design SnapBPF, a kernel-space approach,
which leverages eBPF [19] to enable the efficient capture
and prefetching of function working sets into the OS page
cache. Our key insight is that modern SSDs relax the need for
sequential I/O. This allows us to skip the serialization of the
function working set to storage as a separate file. We instead
employ eBPF to hook the readahead mechanism of the OS
page cache to asynchronously fetch the working set chunks
of the snapshot from storage. In this way and in contrast to
state-of-the-art, SnapBPF deduplicates function footprints in
memory via the OS page cache, without redundant userspace
copies, and also obviates the need for serializing function
working sets to separate files on disk.

SnapBPF also employs a lightweight paravirtualized in-
terface to efficiently handle memory allocations for the VM
sandbox. The VM kernel marks memory allocations via their
page table entries. When the host handles the nested faults
for these page table entries, it serves them with anonymous
memory allocations instead of unnecessarily fetching the
page from the snapshot. Prior art tackles the problem by pre-
scanning the snapshot, based on either page contents (zero
pages) [17] or the VM kernel allocator metadata [16], in order
to detect and filter such pages. By contrast, SnapBPF requires
no snapshot preparation or scanning.

We implement and evaluate SnapBPF on Linux using the
firecracker virtual machine monitor (VMM) [9]. Our eval-
uation shows that SnapBPF matches and improves upon
state-of-the-art prefetching approaches. It has comparable
latency to state-of–the-art and deduplicates function work-
ing sets in memory, thus keeping memory usage bounded
for concurrent invocations. SnapBPF achieves this without
having to rely on separately serialized working sets on disk
and without doing any preemptive snapshot scanning or
pre-processing.

In summary, the contributions of this paper are:

• the analysis of existing snapshot prefetching approaches
and their shortcomings (Section 2),

• the design and implementation of SnapBPF, an eBPF-
based kernel-space snapshot prefetching mechanism,
which addresses the afore-mentioned shortcomings
(Section 3),

• the evaluation of SnapBPF versus the state-of-the-art
prefetching approaches (Section 4).

2 Motivation
2.1 Existing Prefetching Approaches
Existing snapshot prefetching approaches can be broadly
classified into two categories based on the mechanism they
employ to capture and prefetch the function working set.
Regardless of the mechanism used, the capture and loading
of the working set is essentially implemented in userspace.
Table 1 summarizes their design choices and limitations.
Userfaultfd. REAP [11] and Faast [16] use Linux userspace
page fault handling (userfaultfd) [18]. When spawning a new
VM sandbox, they register a userspace page fault handler,
which gets triggered on VM memory page faults. When
handling such a fault, the OS allocates anonymous memory
to serve the fault and then hands over the fault to userspace.
The userspace fault handler subsequently fetches the faulting
page from the snapshot, stored on disk, and copies (installs)
its contents to the page allocated by the OS.
Both techniques that use userspace faults first identify

the function’s working set, and then serialize it to stor-
age (record phase). For subsequent VM sandbox creations
(invocation phase), they both prefetch the function work-
ing set from storage and preemptively install it in the VMM
via userfaultfd. Both REAP and Faast use direct IO when
fetching the snapshot from storage, to bypass the page cache
and avoid the overhead of intermediate memory copies. As
they both rely on userfaultfd, they fail to deduplicate the func-
tion working set across different VM sandboxes, as shown
in the evaluation section (Section 4, Figure 3c). The reason
for this is that userfaultfd uses anonymous memory which
is not shared between VM sandboxes of the same function,
making it impossible to deduplicate the working set across
different sandboxes in memory.
mincore / mmap. FaaSnap [17] on the other hand relies
on the mincore() and mmap() system calls and the OS page
cache for both capturing and prefetching the function’s work-
ing set. The mincore system call returns a byte array which
indicates whether each corresponding page of the calling pro-
cess’s virtual memory is resident in RAM [20]. FaaSnap uses
the mincore system call to identify which snapshot pages
have been fetched from storage into the OS page cache. Simi-
larly to REAP and Faast, it serializes these pages to a separate
working set file. In the invocation phase, FaaSnap memory-
maps the working set file on top of the snapshot file. Instead
of using userfaultfd, it relies on OS page cache prefetching



SnapBPF: Exploiting eBPF for Serverless Snapshot Prefetching HotStorage ’25, July 10–11, 2025, Boston, MA, USA

Mechanism On-disk WS
serialization

In-memory WS
deduplication

Stateless VM
Allocation Filtering

REAP [11] / Faast [16] Userfaultfd
(User-space) Yes ✗ ✗

FaaSnap [17] mincore / mmap
(User-space) Yes ✓ ✗

SnapBPF eBPF
(Kernel-space) No ✓ ✓

Table 1: Comparison of snapshot prefetching techniques.

(readahead), using a userspace thread to issue buffered reads
to fetch the working set to memory. This enables FaaSnap to
deduplicate the working set across different VM sandboxes
via the OS page cache. While this allows in-memory dedu-
plication of the working set between different sandboxes,
FaaSnap has to mmap each working set region separately.
To reduce the number of mmap’ed regions, FaaSnap coa-
lesces working-set regions with few non-working set pages
between them into larger regions. While this reduces the
mmap’ed regions to a manageable number, it also inflates the
working set file, which can affect performance by amplifying
IO, which we verify by instrumenting the kernel using eBPF.

2.2 VM-sandbox memory allocations
Due to the semantic gap between the VM and the host mem-
ory allocator, not all pages that will be used during the in-
vocation of the function are captured by the working set.
For ephemeral memory allocations inside the VM sandbox,
i.e., for memory that is allocated during the invocation and
freed afterwards, the working set pages will differ between
invocations. As prior art points out [16, 17], fetching these
pages from snapshot is unnecessary. The host kernel can
instead provide the VMM with anonymous memory.
Faast and FaaSnap both tackle this issue by resorting

to scanning and pre-processing the snapshot file. FaaSnap
patches the VM kernel to zero pages when they are freed. It
then scans the snapshot file for zero pages and maps those
zero regions of the snapshot file to anonymous memory.
Faast relies on the allocator metadata of the VM kernel to
identify pages that are not actively used in the snapshot and
routes faults for these pages to anonymous memory.

Regardless of the mechanism employed by each approach,
both rely on preemptive snapshot scanning and pre-processing
to optimize the handling of VM memory allocations.

3 SnapBPF
In this section, we present the design and implementation
of SnapBPF. We first describe the kernel-space eBPF-based

capture and prefetch mechanism and then continue with the
paravirtualized PTE marking interface.

3.1 eBPF Capture and Prefetch
SnapBPF uses eBPF [19] to hook the readahead mechanism
of the OS page cache and both capture and prefetch the
function working set in kernel-space.
Capturing the working set. To capture the function’s work-
ing set, we use kprobes [21] to hook the Linux kernel path
that adds pages to the OS page cache. Specifically, we hook
the function add_to_page_cache_lru(). kprobes allow for
users to dynamically create hooks associated with kernel
functions, where user-provided eBPF programs can be at-
tached to. eBPF programs attached to such hooks are trig-
gered whenever the associated function is executed, and
are provided with an execution context, e.g., for function
kprobes, the associated function arguments. For SnapBPF,
the function arguments passed to the SnapBPF eBPF pro-
gram include the file offset of the page that is about to be
added to the page cache. In this way, once we attach the
SnapBPF eBPF program to this hook, we are able to track the
file offsets of the pages that are fetched into the page cache
from the function snapshot.

The capture phase is then as follows. We spawn a new VM
sandbox using the function snapshot. Before actually booting
the VM sandbox, the VMM creates the kprobe, as described
above, and attaches to it the SnapBPF eBPF capture program.
Finally, it invokes the function to capture its working set. The
SnapBPF eBPF capture program will be triggered for every
page that is added to the system’s page cache. Consequently,
it has to filter out any pages that do not belong to the function
snapshot file, i.e. the pages that are not fetched by the VMM.
SnapBPF stores the filtered page offsets, which comprise the
working set, in an eBPF map [22]. Additionally, Linux by
default uses readahead to prefetch pages from disk and hide
storage latency. Hence, we disable readahead in order to only
fetch and capture the working set pages in this phase. Once
the function invocation finishes, the VMM reads the offsets



HotStorage ’25, July 10–11, 2025, Boston, MA, USA S. Psomadakis et al.

from the eBPF map and stores them to disk. Note, that we
only store the page offsets and not the pages themselves, as
prior art does.

microVM

Snap

mmap

Host/KVM
Page Cache

Offsets

eBPF map

Fetch Pages

1

3

snapbpf_prefetch2

Grp1: (n, n + N)
Grp2: (m, m + M)
…

Figure 1: SnapBPF Prefetching. Note that SnapBPF cap-
tures the offsets of the working set pages, not the pages
themselves. SnapBPF will fetch the pages directly from
the snapshot file.

Loading the working set. Once the file offsets for the pages
comprising the working set have been captured, we first
group them into contiguous ranges of offsets and sort them
based on the earliest access time of any of the pages in each
group. We trigger the prefetching of the pages based on this
sorted group order, ensuring that read requests for the pages
needed the earliest are issued first.
Figure 1 shows the steps that load the working set from

a function snapshot. When a new VM sandbox is spawned
from the function snapshot, in order to handle an incoming
function invocation, the VMM first reads the grouped file
offsets of the function working set from disk and loads them
into the kernel via an eBPF map 1 . It then attaches the
SnapBPF prefetch eBPF program to the same kprobe used
earlier, and triggers the prefetching by accessing the first
page of the snapshot 2 . The SnapBPF prefetch eBPF program
will then read the grouped offsets from the eBPFmap andwill
start issuing consecutive read requests for each contiguous
range of offsets from the snapshot file, in the afore-mentioned
sorted order, to fetch them into the OS page cache 3 .
As the Linux kernel sandboxes eBPF programs, which

prevents them from, for example, issuing block requests
to storage or manipulating the OS page cache, we imple-
ment an eBPF helper function, more specifically a kfunc [23]
(snapbpf_prefetch()) 2 , which wraps around the Linux
page cache readahead routine that prefetches pages from
storage (page_cache_ra_unbounded()). Once it issues the
read request for the last group of offsets, the eBPF program
will disable itself.

By issuing read requests directly to the snapshot file, Snap-
BPF obviates the need to separately serialize the working set

to disk and instead only uses metadata to drive the prefetch-
ing. As we show in Section 4, this does not penalize perfor-
mance, as, in contrast to spindle HDDs, modern SSDs don’t
have the same limitations with regard to high-IOPS, non-
sequential I/O. Nonetheless, we do minimize the number
for block requests the kernel issues to storage by grouping
the pages into contiguous ranges, to reduce SW overhead.
Finally, since the pages are loaded directly into the page
cache, they are shared between multiple concurrent VM
sandboxes for the same function, minimizing memory us-
age. Since SnapBPF employs eBPF and essentially works in
kernel-space, there is no need for redundant userspace copies
of data from the page cache, which eliminates most of the
page cache overhead, that forces prior art, such as REAP and
Faast, to opt for direct IO instead.

3.2 PV PTE Marking

microVM

H
os

t K
VM

Function

Buddy Allocator PUD
PMD

PGD

PTE

Guest PFNs Mirrored PFNs

User-space

G
ue

st
 O

S

Snap

Page Tables

PMD
PTE

Extended Page Tables
Buddy Allocator

Pages

Anonymous memory Page Cache
PGD

PUD

1

mmap

I/O

SSD

Page Fault

2
3

4 VM exit

5

6

6
6

Figure 2: PV interface for VM memory allocations to
avoid unnecessary IO.

When booting a VM sandbox from a snapshot file, the
allocation of new pages by the VM guest OS memory man-
ager will end up fetching pages from the on-disk snapshot,
which will eventually be zeroed or overwritten. As men-
tioned in Section 2, prior art addresses this issue by preemp-
tively scanning the snapshot, based on either page contents
(FaaSnap [17]) or allocator metadata (Faast [16]). We instead
adopt a different approach, that works online, without re-
lying on snapshot scanning or pre-processing. We devise a
lightweight paravirtualized (PV) PTE marking mechanism.

Figure 2 shows an overview of our proposed mechanism.
We modify the VM (guest) kernel, so that when it attempts
to allocate guest memory 1 2 , it marks it in a way that
the host (VMM) can detect it and use anonymous memory
instead of fetching data from the snapshot file to back it
up. Specifically, when the VM kernel attempts to map this



SnapBPF: Exploiting eBPF for Serverless Snapshot Prefetching HotStorage ’25, July 10–11, 2025, Boston, MA, USA

freshly-allocated memory in its page tables, instead of using
the actual guest page frame number (gPFN) of the page, we
set the most significant bit (MSB) of the PFN, effectively
mirror-mapping this page to a higher PFN space 3 .

The host kernel, specifically the Linux Kernel Virtual Mon-
itor (KVM), when handling nested page faults for the VM 4 ,
will be able to detect faults for such mirrored PFNs. In that
case, it will use anonymous memory to serve the page fault,
instead of fetching pages from the on-disk snapshot 5 . It
will then map this anonymous page to both the mirrored
and the original gPFN, in the VM’s nested page tables, so
that when the VM subsequently reuses this memory, it also
points to the anonymous page allocated by the host 6 .
In this way, SnapBPF is able to handle the memory al-

locations of the VM sandbox without redundant I/O from
the snapshot file or scanning the snapshot for pages that
should be filtered or skipped before-hand. We also note that
while we implement our PV PTE marking mechanism for
Linux and KVM the design is essentially hypervisor and OS
agnostic.

4 Evaluation
We evaluate SnapBPF and compare it with existing state-of-
the-art prefetching approaches, namely REAP and FaaSnap.
Methodology. We implement SnapBPF on Linux v6.3 and
the firecracker VMM v1.11 [9]. We use functions representa-
tive of common FaaS workloads from the FunctionBench [24]
suite, as well as three real-worldworkloads from FaaSMem [25]
(html_serving, graph_bfs, bert). We instrument firecracker
to track the end-to-end latency for function invocations. We
experiment with a single function instance as well as with
10 concurrent function instances, invoking them with identi-
cal inputs, to showcase the benefit of the deduplication and
snapshot pages sharing enabled by SnapBPF . We consider
evaluating the effect of varying function inputs on SnapBPF’s
memory deduplication for future work.

For the SnapBPF evaluation (Figure 3), we enable both the
eBPF prefetching and the PV PTE marking mechanisms. We
then provide a breakdown of the effect of each mechanism in
Figure 4. For the Linux readahead baseline, we set the reada-
head window to the default Linux kernel value of 128KiB,
i.e., 32 4KiB pages.
Hardware Setup. We evaluate SnapBPF on a 2-socket AMD
EPYC 7402 CPU [26], with 24 hyperthreaded cores per socket.
Each socket has access to 128GiB of DDR4 memory. We use
a 480GiB Micro 5300 TLC NAND flash SATA SSD [27] to
store the function memory snapshots for all methods and the
function working sets for FaaSnap and Faast. To minimize
noise, we pin the VMM threads on specific cores of the first
socket. We also disable hyperthreading and set the CPU core
frequency to 2.5GHz.

Latency. In Figure 3a, we show the end-to-end latency of
REAP, FaaSnap and SnapBPF, when executing a single func-
tion instance. SnapBPF outperforms REAP, as it doesn’t have
to copy pages from userspace to kernel-space via userfaultfd.
It also matches and in some cases outperforms FaaSnap in
terms of E2E function invocation latency, by avoiding the
redundant copying of the working set to userspace in the
prefetching phase, and by maintaining leaner working sets,
similar to REAP.
The shortcomings of userfaultfd-based approaches are

more pronounced when executing 10 concurrent instances
of the same function, where deduplication and sharing of
snapshot pages comes into play. Figure 3b shows the E2E
latency for this scenario. We compare SnapBPF with vanilla
firecracker (no snapshot page prefetching) with Linux reada-
head both disabled (Linux-NoRA) and enabled (Linux-RA), as
well as with REAP. SnapBPF outperforms vanilla firecracker
as it efficiently prefetches the offsets representing the invo-
cation working set. Moreover it outperforms REAP because
it enables deduplication of the snapshot pages and sharing
them among all 10 function instances. Notably, for functions
with large working sets, such as Bert, SnapBPF is able to
achieve 8x lower E2E latency than REAP.
Memory. Figure 3c shows the system-wide memory usage
when running 10 concurrent VM sandboxes of the same func-
tion. Userfaultfd-based approaches are unable to deduplicate
the working set between different sandboxes, leading to in-
creased memory usage with concurrent function invocations.
In this scenario, SnapBPF reduces memory usage by up to 6x
for functions with large working set, such as BFS and Bert.
During the experiment, we observed that Linux KVM

would some times result in excessive Copy-on-Write allo-
cations, when handling nested page faults, which would
diminish the deduplication benefits. We found out that this
was due to the fact that KVM would under certain circum-
stances forcibly handle read nested page faults as write. This
in turn forced the host kernel to CoW the page cache pages
to anonymous memory. Consequently, we patched KVM to
only opportunistically write-map read nested page faults,
i.e., doing it only for faulted-in and already writable pages.
Breakdown Analysis. Figure 4 breaks down the effect of
our eBPF prefetching and PV PTE marking mechanisms, in
terms of function execution latency, when using firecracker
to restore and invoke functions from a snapshot. We use the
default Linux readahead behavior (Linux-RA) as the baseline
and show the speedup achievable when using i) only the PV
PTE marking mechanism (pink bar) and ii) PV PTE marking
combined with eBPF prefetching (red bar).

Functions that during their invocation allocate large amou-
nts of memory, see significant improvements from our PV
PTE marking mechanism, as it is able to redirect the nested
page faults for such allocations to anonymous memory and



HotStorage ’25, July 10–11, 2025, Boston, MA, USA S. Psomadakis et al.

(a) E2E function latency for
a single function instance.

(b) E2E function latency for 10
concurrent function instances.

(c) Memory consumption for 10
concurrent function instances.

Figure 3: SnapBPF matches and outperforms user-space solutions without requiring separate working set files.

Figure 4: Breakdown analysis of the PV PTE marking
and eBPF prefetching SnapBPF mechanisms.

eliminate the unnecessary fetching of pages from the snap-
shot file. The E2E latency for the image processing function
(Image), for example, is improved by more than 2x. Note that
SnapBPF is able to achieve this without having to keep track
of and scan for stale or unused pages in the snapshot as prior
art does. On the other hand, functions that rely on initialized
state, e.g., models, like RNN and Bert, benefit only minimally,
if at all, from the optimization of anonymous memory al-
locations. For these functions, the optimized working set
prefetching is the dominant factor.
SnapBPF Overheads. We measure the latency of loading
the offsets into the kernel, via the eBPF map, to be less than
1% of E2E latency on average (∼1-2ms). We consider a com-
prehensive analysis of the computational and memory costs
of SnapBPF for future work.

5 Related Work
eBPF. Similarly to SnapBPF, other works [28–30] have pro-
posed using eBPF to make the OS page cache programmable,

albeit targeting different use cases. eBPF has also been ex-
plored for filesystems [31], storage functions [32], and ex-
tending the OS memory manager [33].
Page Cache. Previous research has also focused on optimiz-
ing page cache performance and prefetching [34–37], albeit
without targeting userspace extensibility and programmabil-
ity or the FaaS use case.
FaaS Snapshotting. Optimizing function snapshotting has
also been studied outside the context of working set prefetch-
ing, taking advantage of HW acceleration to improve per-
formance with snapshot compression [38, 39] or evaluating
the performance of FaaS snapshotting on storage devices
with different performance profiles [40]. For container-based
sandboxing, disaggregated memory has also been explored
to optimize FaaS snapshotting [41–43].

6 Conclusion
SnapBPF employs eBPF to enable the efficient and program-
mable snapshot prefetching for VM-sandboxed serverless
functions in kernel-space. SnapBPF is able to match and even
outperform state-of-the-art approaches, without requiring
separately serializing and storing the function working sets.
It is able to deduplicate function working sets in memory
via the OS page cache, without redundant userspace copies,
while also enabling the online filtering of VM-sandbox mem-
ory allocations via a lightweight paravirtualized PTE mark-
ing mechanism.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
back. This work was funded by the European Union under
Horizon Europe grant 101092850 (project AERO).

https://aero-project.eu/


SnapBPF: Exploiting eBPF for Serverless Snapshot Prefetching HotStorage ’25, July 10–11, 2025, Boston, MA, USA

References
[1] Amazon Web Services. AWS Lambda, 2025. URL https://aws.amazon.

com/lambda.
[2] Microsoft Azure. Azure functions, 2025. URL https://azure.microsoft.

com/en-us/products/functions.
[3] Huawei Corporation. Huawei Cloud Functions, 2025. URL https:

//developer.huawei.com/consumer/en/agconnect/cloud-function/.
[4] Google Corporation. Google Serverless Computing, 2025. URL https:

//cloud.google.com/serverless.
[5] Alibaba Corporation. Alibaba Serverless Application Engine, 2025.

URL https://www.aliyun.com/product/aliware/sae.
[6] Cloudflare Corporation. Cloudflare Workers, 2025. URL https:

//workers.cloudflare.com/.
[7] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and

Michael Swift. Peeking Behind the Curtains of Serverless Plat-
forms. In Proceedings of the 2018 USENIX annual technical conference
(USENIX ATC), 2018. URL https://www.usenix.org/conference/atc18/
presentation/wang-liang.

[8] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke
Darlow, Jianfeng Wang, Qiwen Deng, and Adam Barker. Serverless
cold starts and where to find them. arXiv preprint arXiv:2410.06145,
2024.

[9] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight virtualization for serverless applications. In 17th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 20), 2020. URL https://www.usenix.org/conference/nsdi20/
presentation/agache.

[10] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup
for serverless computingwith initialization-less booting. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020. URL https:
//doi.org/10.1145/3373376.3378512.

[11] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and
Boris Grot. Benchmarking, analysis, and optimization of serverless
function snapshots. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021. URL https://doi.org/10.1145/3445814.3446714.

[12] Firecracker Development Team. Firecracker Snapshotting, 2025.
URL https://github.com/firecracker-microvm/firecracker/blob/main/
docs/snapshotting/snapshot-support.md.

[13] Amazon Web Services. Improving startup performance with Lambda
SnapStart , 2025. URL https://docs.aws.amazon.com/lambda/latest/dg/
snapstart.html.

[14] Sumer Kohli, Shreyas Kharbanda, Rodrigo Bruno, Joao Carreira, and
Pedro Fonseca. Pronghorn: Effective checkpoint orchestration for
serverless hot-starts. In Proceedings of the Nineteenth European Con-
ference on Computer Systems, 2024.

[15] Wonseok Shin, Wook-Hee Kim, and Changwoo Min. Fireworks: A
fast, efficient, and safe serverless framework using vm-level post-jit
snapshot. In Proceedings of the Seventeenth European Conference on
Computer Systems, 2022.

[16] Yongshu Bai, Zhihui Yang, and Feng Gao. Faast: An efficient serverless
frameworkmade snapshot-based function response fast. In Proceedings
of the 33rd International Symposium on High-Performance Parallel and
Distributed Computing, pages 174–185, 2024.

[17] Lixiang Ao, George Porter, and Geoffrey M Voelker. Faasnap: Faas
made fast using snapshot-based vms. In Proceedings of the Seventeenth
European Conference on Computer Systems, 2022. URL https://doi.org/
10.1145/3492321.3524270.

[18] Linux Kernel Documentation. Userfaultfd, 2025. URL https://docs.
kernel.org/admin-guide/mm/userfaultfd.html".

[19] Linux Kernel Documentation. eBPF, 2025. URL https://docs.kernel.
org/bpf/.

[20] Linux man pages. mincore(2), 2025. URL https://man7.org/linux/man-
pages/man2/mincore.2.html.

[21] Linux Kernel Documentation. Kernel probes (kprobes), 2025. URL
https://docs.kernel.org/trace/kprobes.html.

[22] Linux Kernel Documentation. Bpf maps, 2025. URL https://docs.kernel.
org/bpf/maps.html.

[23] Linux Kernel Documentation. Bpf kernel functions (kfuncs), 2025.
URL https://docs.kernel.org/bpf/kfuncs.html.

[24] Jeongchul Kim and Kyungyong Lee. FunctionBench: A Suite of Work-
loads for Serverless Cloud Function Service. In Proceedings of the 2019
IEEE 12th International Conference on Cloud Computing (CLOUD), 2019.
URL https://doi.org/10.1109/CLOUD.2019.00091.

[25] Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, Han Zhao, Deze Zeng,
Qian Peng, Xueqi Wu, Haifeng Zhao, Senbo Fu, and Minyi Guo. FaaS-
Mem: Improving Memory Efficiency of Serverless Computing with
Memory Pool Architecture. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2024. URL https://doi.org/10.1145/
3620666.3651355.

[26] Inc. Advanced Micro Devices. Amd epyc 7402, 2019. URL
https://www.amd.com/en/support/downloads/drivers.html/
processors/epyc/epyc-7002-series/amd-epyc-7402.html.

[27] Micron Technology Inc. 5300 series sata nand flash ssd, 2019.
URL https://advdownload.advantech.com/productfile/PIS/96FD25-ST1.
9T-M53P/file/96FD25-ST19T-M53P_Datasheet20200120180650.pdf.

[28] Dusol Lee, Inhyuk Choi, Chanyoung Lee, Sungjin Lee, and Jihong
Kim. P2cache: An application-directed page cache for improving
performance of data-intensive applications. In Proceedings of the 15th
ACM Workshop on Hot Topics in Storage and File Systems, 2023. URL
https://doi.org/10.1145/3599691.3603408.

[29] Xuechun Cao, Shaurya Patel, Soo Yee Lim, Xueyuan Han, and Thomas
Pasquier. {FetchBPF}: Customizable prefetching policies in linux with
{eBPF}. In 2024 USENIX Annual Technical Conference (USENIX ATC 24),
2024. URL https://www.usenix.org/conference/atc24/presentation/cao.

[30] Tal Zussman, Ioannis Zarkadas, Jeremy Carin, Andrew Cheng, Huber-
tus Franke, Jonas Pfefferle, and Asaf Cidon. Cache is king: Smart page
eviction with ebpf. arXiv preprint arXiv:2502.02750, 2025.

[31] Ashish Bijlani and Umakishore Ramachandran. Extension framework
for file systems in user space. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19), 2019.

[32] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, et al. {XRP}:{In-Kernel} storage functions with {eBPF}.
In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), 2022.

[33] Konstantinos Mores, Stratos Psomadakis, and Georgios Goumas. ebpf-
mm: Userspace-guided memory management in linux with ebpf. arXiv
preprint arXiv:2409.11220, 2024.

[34] Anastasios Papagiannis, Manolis Marazakis, and Angelos Bilas.
Memory-mapped i/o on steroids. In Proceedings of the Sixteenth Euro-
pean Conference on Computer Systems, 2021. URL https://doi.org/10.
1145/3447786.3456242.

[35] Hasan Al Maruf and Mosharaf Chowdhury. Effectively prefetching
remotememorywith leap. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), 2020.

[36] Pei Cao, Edward W Felten, Anna R Karlin, and Kai Li. Implementation
and performance of integrated application-controlled file caching,
prefetching, and disk scheduling. ACM Transactions on Computer

https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://azure.microsoft.com/en-us/products/functions
https://azure.microsoft.com/en-us/products/functions
https://developer.huawei.com/consumer/en/agconnect/cloud-function/
https://developer.huawei.com/consumer/en/agconnect/cloud-function/
https://cloud.google.com/serverless
https://cloud.google.com/serverless
https://www.aliyun.com/product/aliware/sae
https://workers.cloudflare.com/
https://workers.cloudflare.com/
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3445814.3446714
https://github.com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/snapshot-support.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/snapshot-support.md
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://doi.org/10.1145/3492321.3524270
https://doi.org/10.1145/3492321.3524270
https://docs.kernel.org/admin-guide/mm/userfaultfd.html"
https://docs.kernel.org/admin-guide/mm/userfaultfd.html"
https://docs.kernel.org/bpf/
https://docs.kernel.org/bpf/
https://man7.org/linux/man-pages/man2/mincore.2.html
https://man7.org/linux/man-pages/man2/mincore.2.html
https://docs.kernel.org/trace/kprobes.html
https://docs.kernel.org/bpf/maps.html
https://docs.kernel.org/bpf/maps.html
https://docs.kernel.org/bpf/kfuncs.html
https://doi.org/10.1109/CLOUD.2019.00091
https://doi.org/10.1145/3620666.3651355
https://doi.org/10.1145/3620666.3651355
https://www.amd.com/en/support/downloads/drivers.html/processors/epyc/epyc-7002-series/amd-epyc-7402.html
https://www.amd.com/en/support/downloads/drivers.html/processors/epyc/epyc-7002-series/amd-epyc-7402.html
https://advdownload.advantech.com/productfile/PIS/96FD25-ST1.9T-M53P/file/96FD25-ST19T-M53P_Datasheet20200120180650.pdf
https://advdownload.advantech.com/productfile/PIS/96FD25-ST1.9T-M53P/file/96FD25-ST19T-M53P_Datasheet20200120180650.pdf
https://doi.org/10.1145/3599691.3603408
https://www.usenix.org/conference/atc24/presentation/cao
https://doi.org/10.1145/3447786.3456242
https://doi.org/10.1145/3447786.3456242


HotStorage ’25, July 10–11, 2025, Boston, MA, USA S. Psomadakis et al.

Systems (TOCS), 14(4), 1996.
[37] James Griffioen and Randy Appleton. Reducing file system latency

using a predictive approach. In Proceedings of the USENIX Summer 1994
Technical Conference on USENIX Summer 1994 Technical Conference -
Volume 1, USTC’94, 1994.

[38] Nikita Lazarev, Varun Gohil, James Tsai, Andy Anderson, Bhushan
Chitlur, Zhiru Zhang, and Christina Delimitrou. Sabre:{Hardware-
Accelerated} snapshot compression for serverless {MicroVMs}. In
18th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 24), 2024. URL https://www.usenix.org/conference/osdi24/
presentation/lazarev.

[39] Yuqiao Lan, Xiaohui Peng, and Yifan Wang. Snapipeline: Accelerating
snapshot startup for faas containers. In Proceedings of the 2024 ACM
Symposium on Cloud Computing, 2024. URL https://doi.org/10.1145/
3698038.3698513.

[40] Christos Katsakioris, Chloe Alverti, Vasileios Karakostas, Konstantinos
Nikas, Georgios Goumas, and Nectarios Koziris. Faas in the age of
(sub-) 𝜇s i/o: a performance analysis of snapshotting. In Proceedings of

the 15th ACM International Conference on Systems and Storage, 2022.
URL https://doi.org/10.1145/3534056.3534938.

[41] Xingda Wei, Fangming Lu, Tianxia Wang, Jinyu Gu, Yuhan Yang, Rong
Chen, and Haibo Chen. No provisioned concurrency: Fast {RDMA-
codesigned} remote fork for serverless computing. In 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
23), 2023.

[42] Jialiang Huang, MingXing Zhang, Teng Ma, Zheng Liu, Sixing Lin,
Kang Chen, Jinlei Jiang, Xia Liao, Yingdi Shan, Ning Zhang, et al.
Trenv: Transparently share serverless execution environments across
different functions and nodes. In Proceedings of the ACM SIGOPS 30th
Symposium on Operating Systems Principles, 2024.

[43] Chloe Alverti, Stratos Psomadakis, Burak Ocalan, Shashwat Jaiswal,
Tianyin Xu, and Josep Torrellas. Cxlfork: Fast remote fork over cxl
fabrics. In Proceedings of the 30th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
Volume 2, 2025.

https://www.usenix.org/conference/osdi24/presentation/lazarev
https://www.usenix.org/conference/osdi24/presentation/lazarev
https://doi.org/10.1145/3698038.3698513
https://doi.org/10.1145/3698038.3698513
https://doi.org/10.1145/3534056.3534938

	Abstract
	1 Introduction
	2 Motivation
	2.1 Existing Prefetching Approaches
	2.2 VM-sandbox memory allocations

	3 SnapBPF
	3.1 eBPF Capture and Prefetch
	3.2 PV PTE Marking

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

