
Transparent Variable Translation Sizes (TVTS)

Transparent OS Support for Variable Translation Sizes

Stratos Psomadakis, Georgios Goumas
National Technical University of Athens

Summary
Problem: Address translation overheads

exacerbated by 5-level and nested paging.

2MB pages (THP): Diminishing returns as:

➢ the working sets continue to grow.

➢ Fragmentation limits effective coverage.

1GB pages: Not as widely supported,

harder to use, harder to allocate when

memory gets fragmented.

ARMv8-A Intermediate Translation Sizes

Intermediate Translation Sizes: Potential and Challenges

16x contiguous &
aligned base pages & frames

PFN

VPN

Aligned VPNAligned PFN 1

PFN Lower AttributesUpper Attributes 0

Aligned PFN Lower AttributesUpper Attributes 1 Ign.

Contig
Bit

Coalesced TLB entries

CPU

Load / Store

Page
OffsetVPN

TLB lookup
Contig

BitSingle
TLB Entry

Contig Bit: L1 (PTE) and L2 (PMD) paging
structures include a contig bit, which
when set in 16 consecutive suitably
aligned entries, allows the TLB to cache
them as a single translation entry.

Supported Intermediate Sizes:

• 16x L1 (PTE) 4KB entries, coalesced
to a single 64KB translation,

• 16x L2 (PMD) 2MB entries, coalesced to
a single 32MB translation.

Base Large Intermediate

4KB 2MB, 1GB 64KB, 32MB

Transparent OS Support (THP)

Requires pre-allocation (Hugetlbfs)

L2
STLB

HW-supported Translations Sizes

Preliminary Results

1. KVM support for contiguous translation descriptors.
2. Extend TVPS for virtualized execution.
3. Design an online page-size selection mechanism.
4. Study TVPS performance under fragmentation.
5.Add support for the RISC-V Svnapot extension.

Work-in-progress

Limitations

On-par performance to larger sizes
with less strict alignment and
fragmentation requirements.

✓ 64KB translations eliminate the AT
overhead for irregular workloads with
smaller footprints (astar and omnetp).

✓ 32MB translations improve performance
by up to 20% vs THP, match the
performance of 1GB, for big memory
workloads. For SVM, they use 16% less
memory vs 1GB.

Intermediate sizes are supported
on Linux only via Hugetlbfs, which:

1. requires memory pre-allocation,

a. incurring significant run-time
overheads, e.g. 50% for hashjoin,
with 32MB huge pages,

b. making reserved memory non-
reclaimable by the OS.

2. must be manually configured by the
application.

Our proposal

• Exploit the intermediate
translation sizes available on
ARMv8-A and RISC-V.

• Enhance the OS memory manager
to transparently support these
variable translation sizes.

1
,0

0

1
,0

0

1
,0

0

1
,0

0

1
,0

0

1
,0

9

1
,1

1

1
,0

8

1
,0

2

1
,0

2

1
,1

0

1
,1

1

1
,6

0

1
,4

3

1
,6

1

1
,1

0

1
,1

3

1
,6

0

1
,5

9 1
,8

1

1
,0

9

1
,1

4

1
,5

8

1
,6 1

,8
1

0,00

0,50

1,00

1,50

2,00

astar omnetpp graph500 SVM hashjoin

Speedup (x)

4KB 64KB 2MB 32MB 1GB

1
,0

0

1
,0

0

1
,0

0

1
,0

0

1
,0

0

<
1

%

<
1

%

0
,9

7

0
,8

0 0
,9

9

<
1

%

<
1

%

0
,0

2

0
,3

9

0
,8

7

<
1

%

<
1

%

<
1

%

<
1

%

<
1

%

<
1

%

<
1

%

<
1

%

<
1

%

<
1

%

0,00

0,20

0,40

0,60

0,80

1,00

1,20

astar omnetpp graph500 SVM hashjoin

Normalized TLB misses (x)

4KB 64KB 2MB 32MB 1GB

64KB translations match THP 32MB translations outperform THP

Up to 16% speedup on a
real-world setup. Close

to the ideal, without
memory pre-allocation.

Hugetlbfs performance normalized to 4KB,running on Ampere Altra (ARMv8.2-A)

1 1 1 1

1
,1

1

1
,1

0

1
,4

3 1
,6

1

1
,0

7

1
,0

8

1
,5

3

1
,7

7

1
,1

1

1
,0

9

1
,5

9

1
,8

1

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

omnetpp astar SVM hashjoin

Speedup (x)

4KB THP TVTS Ideal (hugetlbfs)

6
4

K
B

6
4

K
B

3
2

M
B

3
2

M
B

VPN

Fault

Allocate aligned
free target PFN

VMA

PFN

Occupied Page
Free group for potential

Intermediate-sized translation promotion

1
VPN

FaultVMA

PFN

Occupied Page
Free group for potential

Intermediate-sized translation promotion

2

TVTS placement

VPN

VMA

PFN

Occupied Page Promote to intermediate-sized
translation via the contig bit

3

Aligned PFN1 0

Contiguous Translation Descriptors
(Page Table Entries) :

Our Proposal
First fault in the VMA. TVTS selects a
intermediate-size aligned target PFN.

• Enhance CA-Paging [1] to create on demand
suitably-aligned contiguous groups of pages.

• Transparently map them to the corresponding
HW-supported intermediate translation sizes.

Contiguity-Aware paging [1]

TVTS intermediate-sized translation promotion

1

2

3

CA-Paging [1] directs subsequent base page
size faults to their corresponding aligned PFNs.

All base pages have been allocated. TVTS
promotes the group to an intermediate-sized
translation, by setting the contig bit in the base
pages’ descriptors.

[1] Chloe Alverti et al. “Enhancing and Exploiting Contiguity for Fast Memory
Virtualization”, ISCA’20

Contiguous Translation Descriptors (Page Table Entries)

Observations

Combining 64KB with larger sizes could
better utilize fragmented memory.

Intermediate-sized on-demand
faults could increase tail latency
and lead to memory bloat.

	Slide 1

